

ON-CHIP ADVANCED CONTROL ALGORITHM FOR MEMRISTOR OPERATIONS WITH INTEGRATED RISC-V CORE

Wei Zhao¹, Neethu Kuriakose¹, Sabitha Kusuma¹, Abdelaziz Ammari¹, , Arun Ashok¹, Christian Grewing¹, Andre Zambanini¹, Stefan van Waasen^{1,2}

¹ Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, Germany

² Communication Systems Department (NTS), University of Duisburg-Essen

KEY RESULTS

array with precision.

Enabled both voltage and current control modes for the analog conductance control.

RISC-V core to manage a 2×2 memristor

- Improved memory performance through dynamic configuration of pulse parameters.
- Validated the accuracy and reliability of control signals using a Universal Verification Methodology Framework (UVMF) testbench.
- Demonstrated the potential of RISC-V and memristor integration for scalable memory systems and neuromorphic computing applications.

INTRODUCTION

As Moore's law encounters fundamental physical limitations, alternative computational approaches, such as neuromorphic computing using elementary memristors, are gaining traction in the scientific community due to several distinct advantages:

- Scalability
- Compatibility with CMOS Technology

Key Challenges:

CMOS-Based Control Circuitry: Managing analog conductance in memristors requires further research in control systems

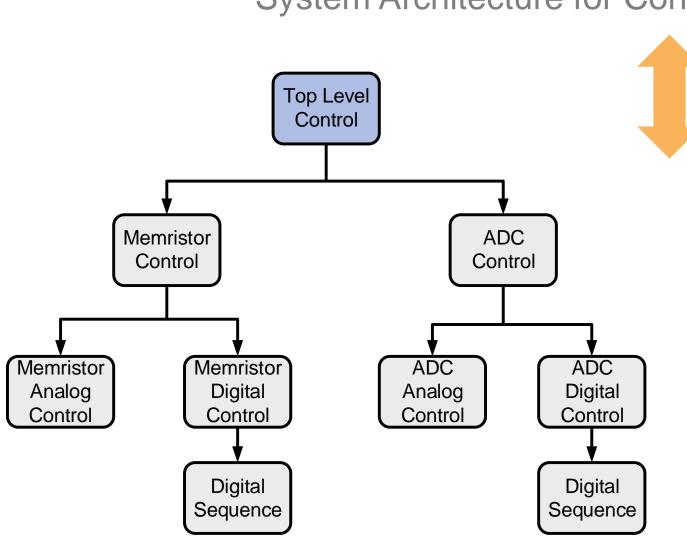
Project Focus:

- Flexible Control Architecture:
 - Utilizing a RISC-V core for adaptable control
 - Designed for both voltage and current control modes in a 2×2 memristor array

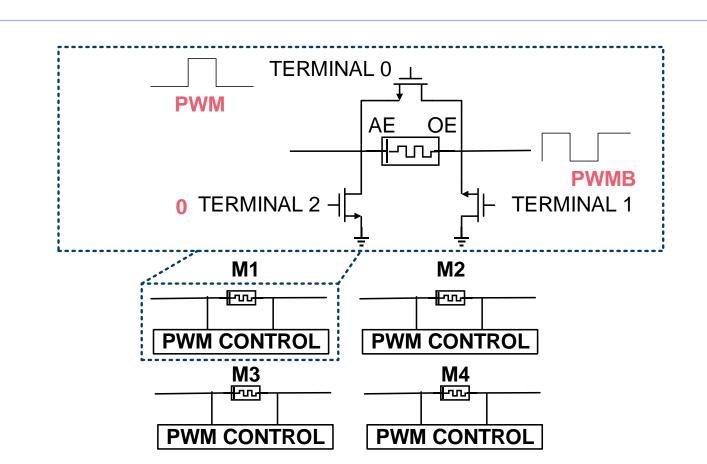
Objectives:

Develop a flexible control based on Soc

DISCUSSION AND FUTURE RESEARCH


- So far, successful control of Low Resistance State (LRS) and High Resistance State (HRS) has been achieved, validating the control system's basic functionality.
- However, precise control of intermediate resistance states remains a challenge and requires further investigation to enable multilevel memory storage.
- Implementing an error correction algorithm may become essential to improve accuracy and reliability in managing these intermediate states, ensuring consistent performance across various applications.

METHODOLOGY



2 CHANNEL **DIG_TOP** ADC CTRL MEMRISTOR_CTRL AE1 Memristor SRAM: **RISC-V Data Memory** AE2 **Memristor** MEMCTRL_CTRL **Instruction Memory** Analog Memristor **CONFIG MCTRL** APB Control Memristor Block **PWM JTAG**

System Architecture for Controlling a 2×2 Memristor Array

- Top Level Control: Directs both memristor and ADC controls.
- Memristor Control: Includes analog and digital control functions for setting memristor states, along with a digital sequence for operation flow.
- ADC Control: Manages analog and digital readout of memristor states, with a digital sequence for readout processes.

- Memristors M1, M2, M3, and M4 are arranged in a 2x2 grid and are controlled by the PWM signals generated by PWM generator.
- The PWM signals are sent to the transmission gates of the corresponding memristors to set, reset, or read each memristor.

INITIALIZATION **ELECTROFORMING MEMRISTOR SELECTION** RD/WR MODE RESISTANCE **READ** WR REQUIRED? NO **END**

- Initialization: Configure system settings and pulse parameters.
- **Electroforming:** Active the memristors.
- Memristor Selection: Choose the specific memristor(s) to operate on.
- Write (WR): Select the operation mode (Voltage, or Current) and execute the write operation.
- Read (RD): Measure the resistance state of the selected memristor.
- Verification: End the process if the memristor has reached the target state (YES). If the target state is not reached (NO), repeat the write-read sequence until successful.

Wei Zhao Master Student at TUM

w.zhao@fz-juelich.de

Electronic Systems (ZEA-2) www.fz-juelich.de/en/zea/zea-2

V MODE/I MODE

VAR MODE

RESET/SET

YES

This research work within the NEUROTEC II project is funded by the German Federal Ministry of Education and Research (BMBF) with grant number

[1] P. Mazumder, S.-M. Kang, R. Waser, "Memristors: Devices, Models, and Applications [Scanning the Issue]" Proc. IEEE, vol. 100, pp. 1911-1919, 2012, doi: 10.1109/JPROC.2012.2190812 [2] K. Higuchi, T. Iwasaki, K. Takeuchi, "Verify-Programming Methods for 50nm HfO2 ReRAM" IEEE Int. Mem. Workshop, Milan, 2012, pp. 1-4, doi: 10.1109/IMW.2012.6213665

[3] H. García, S. Dueñas, Ó. G. Ossorio, H. Castañ, "Current Pulses to Control Conductance in RRAM Devices" IEEE J. Electron Devices Soc., vol. 8, pp. 291-296, 2020, doi: 10.1109/JEDS.2020.2979293 [4] C. Bengel, A. Siemon, F. Cüppers, et al., "Variability-Aware Modeling of Filamentary Oxide-Based Bipolar Resistive Switching Cells" IEEE Trans. Circuits Syst. I, 2020, doi: 10.1109/TCSI.2020.3018502

[5] J. Mair, S. Kusuma, D. Liebau, et al., "Rapid Prototyping Platform for ICs in Quantum Computing" SMACD 2024 [6] L. Vandelli, A. Padovani, L. Larcher, et al., "Modeling of Forming Operation in HfO2 Resistive Memories" IEEE Int. Mem. Workshop, 2011, doi: 10.1109/IMW.2011.5873224 [7] B. Q. Le, et al., "RADAR: Energy-Efficient Programming for RRAM Arrays" IEEE Trans. Electron Devices, vol. 68, no. 9, pp. 4397-4403, 2021, doi: 10.1109/TED.2021.3097975

[8] J. Büchel, et al., "Gradient Descent-Based Programming for Analog In-Memory Computing" IEEE Int. Electron Devices Meeting, 2022, doi: 10.1109/IEDM45625.2022.10019486